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Appendix A Proofs of LDR and SLDR reductions

A.1 Proof of Proposition 1

We use L(mk, N, Ik) to approximate Y(mk, N, Ik) in Problem (2.2). Applying the definition of L(mk, N, Ik)
in (4.1) for each k ∈ [K], the problem above equivalently becomes:

min
x,{y0,k,Y k}K

k=1

c0′x+ sup
P∈F

EP

(
K∑
k=1

d0,k ′
(
y0,k + Y kz̃

))

s.t. cl
′
x+ sup

P∈F
EP

(
K∑
k=1

dl,k
′ (
y0,k + Y kz̃

))
≤ bl ∀l ∈ [M ]

T (z̃)x+
K∑
k=1

Uk
(
y0,k + Y kz̃

)
= v(z̃)

yk ≤ y0,k + Y kz̃ ≤ yk ∀k ∈ [K]
Y kej = 0 ∀j /∈ Ik, ∀k ∈ [K]
x ≥ 0.

(A.1)

We now proceed to show that Problems (A.1) and (4.2) are equivalent. We first notice that due to
linearity, the expectation terms in the objective first M constraints can be expressed as:

sup
P∈F

EP

(
K∑
k=1

dl,k
′ (
y0,k + Y kz̃

))
=

K∑
k=1

dl,k
′
y0,k + sup

P∈F

(
K∑
k=1

dl,k
′
Y kEP (z̃)

)

=
K∑
k=1

dl,k
′
y0,k + sup

ẑ∈Ŵ

(
K∑
k=1

dl,k
′
Y kẑ

)
,
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for any l ∈ {0} ∪ [M ]. Next, for the following constraints to hold for the random variable z̃,

T (z̃)x+
K∑
k=1

Uk
(
y0,k + Y kz̃

)
= v(z̃)

yk ≤ y0,k + Y kz̃ ≤ yk ∀k ∈ [K] ,

it is necessary and sufficient for the constraints to hold within the support, i.e.

T (z)x+
K∑
k=1

Uk
(
y0,k + Y kz

)
= v(z) ∀z ∈ W

yk ≤ y0,k + Y kz ≤ yk ∀z ∈ W,∀k ∈ [K] .

Since the model data T (·),v(·) are assumed to be affine in their respective arguments, we can equiva-
lently re-write the equality constraint as a sum of the components of z, as:(

T 0x+
K∑
k=1

Uky0,k − v0

)
+

N∑
i=1

zi

(
T ix+

K∑
k=1

UkY kei − vi
)

= 0 ∀z ∈ W.

Finally, since W is assumed to be full-dimensional, the constraint holds iff the individual coefficients
vanish, i.e.

T 0x+
K∑
k=1

Uky0,k = v0

T ix+
K∑
k=1

UkY kei = vi ∀i ∈ [N ] .

Putting these all together, Problems (A.1) and (4.2) are equivalent as desired.

A.2 Proof of Proposition 2

For an arbitrary z ∈ <N , we consider ζ = M(z), and the components of γ = Fζ, ∀i ∈ [N ],

γi = ei
′
Fζ

=
L−1∑
l=0

ei+lN
′
ζ (by structure of F )

=
∑
j∈Φ(i)

ζj .

(A.2)

Where the set Φ(i) is defined for brevity as

Φ(i) , {j ∈ [NE ] : i = ((j − 1) mod N) + 1} . (A.3)

Firstly, for each i ∈ [N ], we first consider the case where ∃j ∈ Φ(i), ζj /∈ {ξi,k}Lk=2. We can omit
k = 1 and k = L + 1 in the consideration of the set above, since ζj 6= ±∞. In this case, since
{ξi,k}L+1

k=1 segments the extended real line, ∃k∗ ∈ [L] such that ξi,k∗ < ζj∗ < ξi,k∗+1 for some j∗ ∈ Φ(i).
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Furthermore, using the definition of a segregation (4.6), ζj∗ = zi, and ξi,k∗ < zi < ξi,k∗+1. Using
property (4.5), ∀k ∈ [L+ 1], we get

zi > ξi,k if k < k∗,

zi < ξi,k if k > k∗.

Hence, using the definition of a segregation (4.6) again, and recalling that k = dj/Ne, this implies that
∀j ∈ Φ(i),

ζj = ξi,k+1 if j < j∗,

ζj = ξi,k if j > j∗,

ζj = zi if j = j∗.

Hence, substituting into (A.2), we get

γi =
∑
j∈Φ(i)

ζj

= ζj∗ +
∑
j∈Φ(i)

j<j∗

ζj +
∑
j∈Φ(i)

j>j∗

ζj

= zi +
L∑
k=2

ξi,k

= zi − gi.

Since this holds for each i ∈ [N ], we obtain FM(z) = z − g, ∀z ∈ <N such that ∃j ∈ Φ(i), ej ′M(z) /∈
{ξi,k}Lk=2.

Next, we consider the case that ∀j ∈ Φ(i), ζj ∈ {ξi,k}Lk=2. There are L elements in Φ(i), and ζj

can take on L − 1 distinct values. Hence, we can apply the pigeonhole principle, which implies that
∃k∗ ∈ {2, . . . , L} ,∃j1, j2 ∈ Φ(i), such that ζj1 = ζj2 = ξi,k∗ . From the definition of a segregation, (4.6),
we can establish that |j1 − j2| = N , and ζj1 = ζj2 = zi. We can express this alternatively as ∃j∗ ∈ Φ(i),
such that zi = ζj∗ = ζj∗+N = ξi,k∗ . Finally, recalling that k = dj/Ne, we again have

ζj = ξi,k+1 if j < j∗,

ζj = ξi,k if j > j∗,

ζj = ξi,k∗ = zi if j = j∗.

By the same argument as the previous case, we obtain z = FM(z) + g, ∀z ∈ <N such that
∀j ∈ Φ(i), ej ′M(z) ∈ {ξi,k}Lk=2. Combining these two cases allows us to conclude that ∀z ∈ <N ,
z=FM(z)+g.
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A.3 Proof of Proposition 3

To prove the first inequality, we express ζ = M(z), and equivalently re-express Problem (4.7) as

ZSLDR
∗ = min

x,{rk(·)}K
k=1

c0′x+
K∑
k=1

d0,k ′r0,k + sup
ζ̂∈V̂∗

(
K∑
k=1

d0,k ′Rkζ̂

)

s.t. cl
′
x+

K∑
k=1

dl,k
′
r0,k + sup

ζ̂∈V̂∗

(
K∑
k=1

dl,k
′
Rkζ̂

)
≤ bl ∀l ∈ [M ]

T (Fζ + g)x+

(
K∑
k=1

Ukr0,k +UkRkζ

)
= v(Fζ + g) ∀ζ ∈ V∗

yk ≤ r0,k +Rkζ ≤ yk ∀ζ ∈ V∗ ∀k ∈ [K]
x ≥ 0
rk ◦M ∈ Y(mk, N, Ik) ∀k ∈ [K] .

(A.4)
We assume that we have some

(
x,
{
r0,k,Rk

}K
k=1

)
that is feasible in the approximated SLDR prob-

lem (4.12). The inclusion V̂∗ ⊆ V̂, implies that the first M inequalities in Problem (A.4) are satisfied.
Furthermore, the inclusion V∗ ⊆ V implies that the upper and lower bounds in Problem (A.4) are also
satisfied. To show that the equality constraint in Problem (A.4) is satisfied, we consider the following
expression for an arbitrary ζ ∈ V∗:

T (Fζ + g)x+

(
K∑
k=1

Ukr0,k +UkRkζ

)
− v(Fζ + g)

=

(
T 0x+

N∑
i=1

(ei′Fζ + gi)T ix

)
+

(
K∑
k=1

Ukr0,k +UkRkζ

)
−

(
v0 +

N∑
i=1

(ei′Fζ + gi)vi
)

=

(
T 0x+

N∑
i=1

giT
ix+

K∑
k=1

Ukr0,k − v0 −
N∑
i=1

giv
i

)
+

N∑
i=1

(ei′Fζ)
(
T ix− vi

)
+

K∑
k=1

UkRkζ

=

(
T 0x+

K∑
k=1

Ukr0,k − ν0

)
+

N∑
i=1

(ei′Fζ)
(
T ix− vi

)
+

K∑
k=1

UkRkζ

=

(
T 0x+

K∑
k=1

Ukr0,k − ν0

)
+

N∑
i=1

NE∑
j=1

Fijζj
(
T ix− vi

)
+

K∑
k=1

UkRk
NE∑
i=j

ζje
j

=

(
T 0x+

K∑
k=1

Ukr0,k − ν0

)
+

NE∑
j=1

ζj

N∑
i=1

Fij
(
T ix− vi

)
+

NE∑
j=1

ζj

K∑
k=1

UkRkej

=

(
T 0x+

K∑
k=1

Ukr0,k − ν0

)
+

NE∑
j=1

ζj

(
T jx− νj +

K∑
k=1

UkRkej

)
.

Hence, the system of equality constraints in Problem (4.12) implies that the above expression vanishes
component-wise for any ζ ∈ <NE , which in turn implies that it vanishes component-wise for any ζ ∈ V∗.
Finally, we consider the non-anticipativity requirement. Denoting by (M(z))j the jth component of
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M(z) for some j ∈ [NE ],

j ∈ Φk ⇔

M
z +

∑
i/∈Ik

λie
i


j

= (M (z))j ∀λ ∈ <N (A.5)

for each k ∈ [K]. The forward direction follows directly from the definition of Φk in (4.11). The reverse
direction results from requiring the equality to hold for all λ ∈ <N . The only components (M(z))j that
are invariant to all λ are those with indices j in the set {j ∈ [NE ] : (i− 1) ≡ (j − 1) mod N} = Φk.

Next, we expand the composite function:

rk ◦M (z) = r0,k +RkM (z)

= r0,k +Rk
NE∑
j=1

(M (z))j e
j

= r0,k +
NE∑
j=1

(M (z))jR
kej

= r0,k +
∑
j∈Φk

(M (z))jR
kej ,

(A.6)

where the last equality is due to the assumption of feasibility in (4.12), which gives Rkej = 0, ∀j /∈ Φk.
Hence, for an arbitrary λ ∈ <N ,

rk ◦M

z +
∑
i/∈Ik

λie
i

 = r0,k +
∑
j∈Φk

M
z +

∑
i/∈Ik

λie
i


j

Rkej (by (A.6))

= r0,k +
∑
j∈Φk

(M (z))jR
kej (by (A.5))

= rk ◦M (z) (by (A.6)),

implying that rk ◦M ∈ Y(mk, N, Ik) as required. Therefore, we have established that any feasible
solution to (4.12) is always feasible in (A.4), with an objective that is not smaller. Hence we have
ZSLDR

∗ ≤ ZSLDR.
To prove the second inequality, we consider Problem (4.12), and choose ∀k ∈ [K],

Rk = Y kF ,

r0,k = y0,k + Y kg.
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Problem (4.12) becomes:

ZSLDR = min
x,{y0,k,Y k}K

k=1

c0′x+
K∑
k=1

d0,k ′y0,k + sup
ζ̂∈V̂

(
K∑
k=1

d0,k ′Y k(F ζ̂ + g)

)

s.t. cl
′
x+

K∑
k=1

dl,k
′
y0,k + sup

ζ̂∈V̂

(
K∑
k=1

dl,k
′
Y k(F ζ̂ + g)

)
≤ bl ∀l ∈ [M ]

T 0x+

(
K∑
k=1

Uky0,k +UkY kg

)
= ν0

T jx+
K∑
k=1

UkY kFej = νj ∀j ∈ [NE ]

yk ≤ y0,k + Y k(Fζ + g) ≤ yk ∀ζ ∈ V ∀k ∈ [K]
Y kFej = 0 ∀j /∈ Φk,∀k ∈ [K]
x ≥ 0.

Expanding the terms
{
T j ,νj

}NE
j=0

, we obtain

ZSLDR = min
x,{y0,k,Y k}K

k=1

c0′x+
K∑
k=1

d0,k ′y0,k + sup
ζ̂∈V̂

(
K∑
k=1

d0,k ′Y k(F ζ̂ + g)

)

s.t. cl
′
x+

K∑
k=1

dl,k
′
y0,k + sup

ζ̂∈V̂

(
K∑
k=1

dl,k
′
Y k(F ζ̂ + g)

)
≤ bl ∀l ∈ [M ](

T 0x+
K∑
k=1

Uky0,k − v0

)

+
N∑
i=1

gi

(
T ix+

K∑
k=1

UkY kei − vi
)

= 0

N∑
i=1

Fij

(
T ix+

K∑
k=1

UkY kei − vi
)

= 0 ∀j ∈ [NE ]

yk ≤ y0,k + Y k(Fζ + g) ≤ yk ∀ζ ∈ V ∀k ∈ [K]
Y kFej = 0 ∀j /∈ Φk,∀k ∈ [K]
x ≥ 0.

Since M(·) represents a segregation, F is the horizontal concatenation of L identity matrices. Hence,
∀j ∈ [NE ], Fej = ei where (i−1) ≡ (j−1) mod N . Notice that ej ∈ <NE while ei ∈ <N . In particular,
for any index set I ⊆ [N ],

Y ei = 0 ∀i ∈ I ⇔ Y Fej = 0 ∀j ∈ {j ∈ [NE ] : ∃i ∈ I : (i− 1) ≡ (j − 1) mod N} .

In particular, if we choose I = Ick, then using the definition of Φk (4.11), we can express the above as

Y ei = 0 ∀i /∈ Ik ⇔ Y Fej = 0 ∀j /∈ Φk,

by applying the definition of Φk (4.11), Hence, using (4.8), any feasible point
(
x,
{
y0,k,Y k

}K
k=1

)
in

Problem (4.2) is also feasible in Problem (4.12), and since their objectives coincide, we have ZSLDR ≤
ZLDR.
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Appendix B Proofs of Bounds on EP
(
(·)+)

B.1 Proof of Theorem 1

For the case of a fixed mean ζ̂ = µ, Natarajan et al. [3, Theorem 2.2], provided a tight bound in for the
expectation of a general piecewise-linear utility function applied to an LDR. We specialize their result
for the case of the utility function u(x) = x+ , to obtain

sup
supp(ζ̃)⊆V,ζ̂=µ

EP

((
r0 + r′ζ̃

)+
)

= inf
s∈<NE

(
s′µ+ sup

ζ∈V

(
max

{
r0 + r′ζ − s′ζ,−s′ζ

}))
,

and equality is obtained because of the strong duality result of Isii [2]. In general, if the mean is not

fixed, the ambiguity-averse bound on EP

((
r0 + r′ζ̃

)+
)

is simply obtained by taking the supremum

over the allowed values of ζ̂ ∈ V̂, which yields

sup
P∈F1

EP

((
r0 + r′ζ̃

)+
)

= π1
(
r0, r

)
,

as required.

B.2 Proof of Theorem 2

In Natarajan et al [3, Theorem 2.1], the authors use a projection method by Popescu [4, Theorem 1] to
show that if ζ̃ has a known mean ζ̂ = µ and covariance ΣV , the following equality holds:

sup
ζ̃∼(µ,ΣV )

EP

((
r0 + r′ζ̃

)+
)

=
1
2
(
r0 + r′µ

)
+

1
2

√
(r0 + r′µ)2 + r′ΣVr.

To construct the worst-case bounds of EP

((
r0 + r′ζ̃

)+
)

over all P ∈ F2, we simply need to find the

supremum over all allowable
(
ζ̂,ΣV

)
in F2. We obtain the bound by solving the following optimization

problem:

sup
P∈F2

EP

((
r0 + r′ζ̃

)+
)

= η2(r0, r) , sup
ζ̂,ΣV

{
1
2

(
r0 + r′ζ̂

)
+

1
2

√
(r0 + r′ζ̂)2 + r′ΣVr

}
s.t. FΣVF ′ = Σ

ΣV ∈ SNE+

ζ̂ ∈ V̂,

where SN+ denotes the positive semidefinite cone of symmetric N×N matrices. We complete the proof by
showing that the bounds η2(r0, r) and π2

(
r0, r

)
are equivalent. Suppose ∃y ∈ <N such that F ′y = r,

then r′ΣVr = y′FΣVF ′y = y′Σy, and the bounds are easily seen to be equivalent. Now suppose
6 ∃y ∈ <N such that F ′y = r. This causes the outer optimization problem defining π2

(
r0, r

)
to be

infeasible, and π2
(
r0, r

)
= +∞. We proceed to establish that η2(r0, r) = +∞ as well. To begin the

proof, we choose
Σ0
V = F ′

(
FF ′

)−1 Σ
(
FF ′

)−1
F ,
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which satisfies FΣ0
VF
′ = Σ. We notice that FF ′ is invertible since NE ≥ N , and F is assumed to be

full rank. Next, we choose y = (FF ′)−1
Fr, and express r = F ′y + r⊥. By assumption, F ′y 6= r,

which implies r⊥ 6= 0. Furthermore, we have

Fr⊥ = Fr − FF ′y
= Fr − FF ′ (FF ′)−1

Fr

= 0.

Now, for some λ ∈ <+, consider
ΣV (λ) = Σ0

V + λr⊥r⊥
′.

We notice that ΣV (λ) ∈ SNE+ . Furthermore, we have

F
(
ΣV (λ)

)
F ′ = FΣ0

VF
′ + 0

= Σ .

Hence, for any ζ̂ ∈ V̂, λ ∈ <+, η2
(
r0, r

)
is bounded from below by

η2
(
r0, r

)
≥ 1

2

(
r0 + r′ζ̂

)
+

1
2

√
(r0 + r′ζ̂)2 + r′ΣV(λ)r

=
1
2

(
r0 + r′ζ̂

)
+

1
2

√
(r0 + r′ζ̂)2 + r′Σ0

Vr + λ (r′r⊥)2

=
1
2

(
r0 + r′ζ̂

)
+

1
2

√
(r0 + r′ζ̂)2 + r′Σ0

Vr + λ (y′Fr⊥ + r⊥′r⊥)2

=
1
2

(
r0 + r′ζ̂

)
+

1
2

√
(r0 + r′ζ̂)2 + r′Σ0

Vr + λ ‖r⊥‖42.

Taking the limit as λ → ∞, the lower bound (i.e. right-hand side) approaches +∞. Thus, if
6 ∃y such that F ′y = r, then η2(r0, r) = +∞ as desired.

B.3 Proof of Theorem 3

We only have to prove the bound in the non-infinite case. We begin by noticing that we can express
x0 + x′z̃σ as:

x0 + x′z̃σ ≡ x0 + x′ẑσ + x′ (z̃σ − ẑσ) .

Now, we use the property ∀λ > 0 that

w+ ≤ λ

e
exp

(w
λ

)
,∀w ∈ <,

and the independence of each component of z̃σ to obtain the general bound

EP

((
x0 + x′z̃σ

)+) ≤ λ

e
exp

(
1
λ

sup
ẑσ∈Ŵσ

{
x0 + x′ẑσ

}) Nσ∏
j=1

EP

(
exp

(
xj (z̃σ,j − ẑσ,j)

λ

))
.

Now, using the definition of the forward and backward deviations in [1, Equations (17) and (18)],
∀P ∈ F3,

ln
(

EP

(
exp

(
xj (z̃σ,j − ẑσ,j)

λ

)))
≤

{
x2
jσ

2
f,j/2λ

2 if xj ≥ 0,
x2
jσ

2
b,j/2λ

2 otherwise.
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Combining these results, when (r0, r) = (x0 + x′gσ,F
′
σx), we get

sup
P∈F3

EP

((
r0 + r′ζ̃

)+
)

= sup
P∈F3

EP
(
(x0 + x′z̃σ)+

)
≤ ψ(x0,x). (B.1)

Next, using the identity x+ ≡ x+ x− ∀x ∈ <, by the same argument,

sup
P∈F3

EP

((
r0 + r′ζ̃

)+
)
≤

(
r0 + sup

ζ̂∈V̂
r′ζ̂

)
+ ψ(−x0,−x). (B.2)

Since choosing (s0, s) = (x0,x) in (5.4) reduces to (B.1) and choosing (s0, s) = (0,0) in (5.4) reduces
to (B.2), we have shown that π3

(
r0, r

)
is not larger than either (B.1) or (B.2). Finally, we establish

that π3
(
r0, r

)
indeed bounds EP

((
r0 + r′ζ̃

)+
)

from above. For any (s0, s, x0,x) such that (x0 +

x′gσ,F
′
σx) = (r0, r), we have

(r0 − s0)− s′gσ + sup
ζ̂∈V̂

(
r − s′F σ

)
ζ̂ + ψ(s0 − x0, s− x) + ψ(s0, s)

≥ (x0 − s0) + (x− s)′ gσ + sup
ζ̂∈V̂

(
(x− s)′ F σζ̂

)
+ ψ(s0 − x0, s− x) + ψ(s0, s)

≥ sup
P∈F3

EP

((
(x0 − s0) + (x− s)′ z̃σ

)+)+ sup
P∈F3

EP

((
s0 + s′z̃σ

)+) (by (B.1) and (B.2))

≥ sup
P∈F3

EP

((
x0 + x′z̃σ

)+) (by subadditivity)

= sup
P∈F3

EP

((
r0 + r′ζ̃

)+
)
.

Since the above inequality holds for any choice of (s0, s, x0,x) which satisfies (x0 +x′gσ,F
′
σx) = (r0, r),

it also holds when we take the infimum, and hence π3
(
r0, r

)
bounds sup

P∈F3

EP

((
r0 + r′ζ̃

)+
)

from above

as required.

B.4 Proof of Theorem 4

B.4.1 Lemma: Positive Homogeneity of πs
(
r0, r

)
Lemma 1 The bounding functions πs

(
r0, r

)
are positively homogeneous for each s ∈ {1, 2, 3}.

Proof : The bounding functions π1
(
r0, r

)
and π2

(
r0, r

)
are easily seen to be positive homogeneous.

We shall only explicitly prove the positive homogeneity of π3
(
r0, r

)
. For any µ > 0, we notice that

ψ(µx0, µx) = inf
λ>0

{
λ

e
exp

(
µ

λ
sup

ẑσ∈Ŵσ

{
x0 + x′ẑσ

}
+
µ2 ‖u‖22

2λ2

)}
,

from the positive homogeneity of the supremum and norm operators. Re-expressing the minimization
problem in terms of a new variable, ν = λ

µ ,

ψ(µx0, µx) = inf
ν>0

{
µν

e
exp

(
1
ν

sup
ẑσ∈Ŵσ

{
x0 + x′ẑσ

}
+
‖u‖22
2ν2

)}
= µψ(x0,x),

9



where the final equality comes from the positive homogeneity of the infimum operator. Now we consider

π3
(
µr0, µr

)
= inf

s0,s,x0,x

x0+x′gσ=µr0

F ′σx=µr

 (µr0 − s0 − s′gσ) + sup
ζ̂∈V̂

(µr′ − s′F σ)ζ̂

+ ψ(s0 − x0, s− x) + ψ(s0, s)


and, using the same idea as before, express the minimization problem in terms of new variables (q0, q) =(
s0

µ ,
s
µ

)
, and (w0,w) =

(
x0

µ ,
x
µ

)
, we get

π3
(
µr0, µr

)
= inf

q0,q,w0,w

w0+w′gσ=r0

F ′σw=r

 µ(r0 − q0 − q′gσ) + µ sup
ζ̂∈V̂

(r′ − q′F σ)ζ̂

+ ψ(µq0 − µw0, µq − µw) + ψ(µq0, µq)

 .

Using the positive homogeneity of the infimum operator and ψ(x0,x) established earlier, we obtain
π3
(
µr0, µr

)
= µπ3

(
r0, r

)
∀µ > 0.

We consider the case of µ = 0 separately. We first notice that the Hσ is full rank by definition,
since it represents a mapping to an uncertainty vector zσ with stochastically independent components.
Hence F σ = HσF is also full rank, and from the constraints, (r0, r) = (0,0) implies (x0,x) = (0,0).
Simplifying, we have

π3(0,0) = inf
s0,s

{
(s0 − s′gσ) + sup

ζ̂∈V̂
(−s′F σ)ζ̂ + 2ψ(s0, s)

}
.

We know that π3(0,0) ≥ 0 due to the upper bound property (Theorem 3). Furthermore, substituting
the feasible (s0, s) = (0,0) in the inner expression, and noticing that ψ(0,0) = 0, we get π3(0,0) ≤ 0.
Thus π3(0,0) = 0, and π3

(
r0, r

)
is positive homogeneous.

B.4.2 Proof of Theorem 4

We begin by noticing that each πs
(
r0, r

)
is convex and positive homogeneous (Lemma 1) in its argu-

ments. From positive homogeneity of each πs
(
r0, r

)
, we have πs (0,0) = 0, which gives us the second

inequality of (5.6). To establish that π
(
r0, r

)
does indeed bound sup

P∈F
EP

((
r0 + r′ζ̃

)+
)

from above,

we have for each P ∈
⋂
s∈S Fs

∑
s∈S π

s
(
r0,s, rs

)
≥

∑
s∈S EP

((
r0,s + rs′ζ̃

)+
)

(using P ∈ Fs)

= EP

(∑
s∈S

(
r0,s + rs′ζ̃

)+
)

(by linearity)

≥ EP

((∑
s∈S r

0,s + rs′ζ̃
)+
)

(by subadditivity of (·)+)

= EP

((
r0 + r′ζ̃

)+
)

(from (5.5)).
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Appendix C Proofs of BDLDR Properties

C.1 Proof of Proposition 4

C.1.1 Lemma: Bounding a portion of the BDLDR

For clarity of exposition, we begin the proof with the following lemma:

Lemma 2 For each j ∈ [m], the following inequality holds:

y
j
≤ rj(ζ̃) +

(
rj(ζ̃)− y

j

)−
1{j∈J◦} −

(
rj(ζ̃)− yj

)+
1{j∈J◦} ≤ yj .

Proof : We divide the proof into 4 cases:

Case 1: When j ∈ [m] \
(
J◦ ∪ J◦

)
, the result holds directly from Equation (6.14).

Case 2: When j ∈ J◦ \ J◦: To prove the upper bound, it suffices to consider the case when j ∈ J .
Furthermore, by assumption, j /∈ J

◦, we can apply the linear constraints of Equation (6.14),
rj(ζ̃) ≤ yj . Together with the obvious y

j
≤ yj , we get

rj(ζ̃) +
(
rj(ζ̃)− y

j

)−
= max

{
rj(ζ̃), y

j

}
≤ yj .

Thus proving the upper bound. The lower bound follows directly from

y
j
≤ max

{
rj(ζ̃), y

j

}
.

Case 3: When j ∈ J◦ \ J◦, the proof follows an identical argument to Case 2.

Case 4: When j ∈ J◦ ∩ J◦, we have

rj(ζ̃) +
(
rj(ζ̃)− y

j

)−
−
(
rj(ζ̃)− yj

)+
= max

{
min

{
rj(ζ̃), yj

}
, y
j

}
,

which directly satisfies both upper and lower bounds.

C.1.2 Proof of Proposition 4

We notice that statement 1 of the proposition follows directly from the feasibility of each p̄i and q̄i

in (6.12) and (6.13). To prove statement 2 of the proposition, we consider the jth component of the
BDLDR, by considering the statement y

j
≤ r̂j(ζ̃) ≤ yj , ∀j ∈ [m]. We notice that the BDLDR can be

written in the following verbose form:

r̂j(ζ̃) =

(
rj(ζ̃) +

(
rj(ζ̃)− y

j

)−
1{j∈J◦} −

(
rj(ζ̃)− yj

)+
1{j∈J◦}

)
+

∑
i∈J◦\{j}

(
ri(ζ̃)− y

i

)−
p̄ij +

∑
i∈J◦\{j}

(
ri(ζ̃)− yi

)+
q̄ij .

11



To prove the upper bound, it suffices to consider j ∈ J . We notice that we have explicitly removed j

from both summation terms, so in both sums, i 6= j. Furthermore, since we only sum over indices i such
that p̄i and q̄i are feasible in (6.12) and (6.13) respectively and we have established that j ∈ J \ {i},
we have p̄ij ≤ 0 and q̄ij ≤ 0. Finally, the upper bound of Lemma 2 establishes the upper bound in the
proposition statement. The lower bound can be proven with an identical argument.

C.2 Proof of Proposition 5

To show the second inequality, we begin by noting that each feasible solution of (6.19) is feasible in
(6.22). We further note that ∀i ∈ J, π1(−r0

i + y
i
,−R′ei) = 0, (see Remark in Section 5.1). Similarly,

∀i ∈ J, π1(r0
i − yi,R′ei) = 0. Since J◦D,R ⊆ J and J◦D,R ⊆ J , and using the property that π(·) ≤ π1(·),

we obtain ZDLDR ≤ ZSLDR.
To prove the first inequality, we consider the sub-problems for the BDLDR, (6.12) and (6.13) against

the corresponding sub-problems for the DLDR, (6.20) and (6.21). We notice that they are identical,
with the sole exception that the BDLDR sub-problems (6.12, 6.13) have one less inequality constraint
compared with the DLDR counterparts (6.20, 6.21). In particular, whenever i ∈ J , the first DLDR
sub-problem (6.20) is always infeasible. Conversely, if i /∈ J , both the BDLDR sub-problem (6.12) and
DLDR sub-problem (6.20) are identical. A similar relation holds for the second sub-problem. This leads
to the following set relations:

J◦D = J◦ \ J,
J
◦
D = J

◦ \ J,
(C.1)

and relations for the optimal solutions to the sub-problems:

p̄iD = p̄i ∀i ∈ J◦D,
q̄iD = q̄i ∀i ∈ J◦D.

(C.2)

Together, these imply the set relations for the reduced index sets:

J◦D,R = J◦R \ J,
J
◦
D,R = J

◦
R \ J.

(C.3)

Hence, using these relations, any feasible solution of (6.22) is feasible in (6.18). Using a similar argument
to the DLDR vs SLDR above, we can relate the objectives by ZBDLDR ≤ ZDLDR.

C.3 Proof of Proposition 6

From the BDLDR definition (6.29), it is obvious that the kth BDLDR, rk(ζ̃) has no dependency for any
ζj , ∀j ∈ Φc

k. Hence, Φ̂k ⊆ Φk follows directly. Now, assuming problem (4.12) is feasible, we denote a
feasible set of SLDRs to the problem as

{
rk
}K
k=1

. We notice that
{
rk
}K
k=1

lies within the feasible region
of problem (6.28), and is an valid candidate to construct our DLDR. However, feasibility in problem
(4.12) implies that the nonlinear terms in (6.29) vanish, giving us r̂k(ζ̃) = rk(ζ̃). Hence it is necessary
that their information index sets agree, i.e. Φ̂k = Φk.
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C.4 Proof of Proposition 7

We consider:

K∑
k=1

∑
j∈N−(k)

∑
i∈J◦j

(
rji (ζ̃)− yj

i

)−
Ukpi,j,k +

∑
i∈J◦j

(
rji (ζ̃)− yji

)+
Ukqi,j,k


=

K∑
k=1

K∑
j=1

∑
i∈J◦j

(
rji (ζ̃)− yj

i

)−
Ukpi,j,k +

∑
i∈J◦j

(
rji (ζ̃)− yji

)+
Ukqi,j,k

1{j∈N−(k)}

=
K∑
j=1

K∑
k=1

∑
i∈J◦j

(
rji (ζ̃)− yj

i

)−
Ukpi,j,k +

∑
i∈J◦j

(
rji (ζ̃)− yji

)+
Ukqi,j,k

1{k∈N+(j)}

=
K∑
j=1

∑
k∈N+(j)

∑
i∈J◦j

(
rji (ζ̃)− yj

i

)−
Ukpi,j,k +

∑
k∈N+(j)

∑
i∈J◦j

(
rji (ζ̃)− yji

)+
Ukqi,j,k


=

K∑
j=1

 ∑
k∈N+(j)

∑
i∈J◦j

(
rji (ζ̃)− yj

i

)−
Ukpi,j,k +

∑
k∈N+(j)

∑
i∈J◦j

(
rji (ζ̃)− yji

)+
Ukqi,j,k

 ,

where we reverse the order of summation in the second equality, and use property (6.24). Considering
the final expression, we note that the polyhedral regions P (i, j) and Q(i, j) are non-empty for i ∈ J◦j
and i ∈ J◦j respectively, allowing us to apply the set of constraints (6.25) and (6.26). Applying the first
constraint in each constraint set, we notice that the first summation vanishes for each i ∈ J◦j , and the
second summation vanishes for each i ∈ J◦j . This causes the entire expression above to vanish, implying
the result in statement 1 of the proposition. We prove statement 2 of the proposition by establishing
the upper and lower bounds component-wise. We consider the nth component of the kth BDLDR, and
rewrite it in the more verbose form:

r̂kn(ζ̃) = rkn(ζ̃) +
∑

j∈N−(k)

∑
i∈J◦j

(
rji (ζ̃)− yj

i

)−
pi,j,kn +

∑
j∈N−(k)

∑
i∈J◦j

(
rji (ζ̃)− yji

)+
qi,j,kn

= rkn(ζ̃) +
∑
i∈J◦k

(
rki (ζ̃)− yk

i

)−
pi,k,kn +

∑
j∈N−(k)\{k}

∑
i∈J◦j

(
rji (ζ̃)− yj

i

)−
pi,j,kn

+
∑
i∈J◦k

(
rki (ζ̃)− yki

)+
qi,k,kn +

∑
j∈N−(k)\{k}

∑
i∈J◦j

(
rji (ζ̃)− yji

)+
qi,j,kn .
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And extracting the i = n term from the first and third sums, we get the final expression:

r̂kn(ζ̃) = rkn(ζ̃) +
(
rkn(ζ̃)− yk

n

)−
1{n∈J◦k} −

(
rkn(ζ̃)− ykn

)+
1{n∈J◦k}

+
∑

i∈J◦k\{n}

(
rki (ζ̃)− yk

i

)−
pi,k,kn︸ ︷︷ ︸

(A)

+
∑

j∈N−(k)\{k}

∑
i∈J◦j

(
rji (ζ̃)− yj

i

)−
pi,j,kn︸ ︷︷ ︸

(B)

+
∑

i∈J◦k\{n}

(
rki (ζ̃)− yki

)+
qi,k,kn︸ ︷︷ ︸

(C)

+
∑

j∈N−(k)\{k}

∑
i∈J◦j

(
rji (ζ̃)− yji

)+
qi,j,kn

︸ ︷︷ ︸
(D)

.

To prove the upper bound of statement 2 of the proposition, it suffices to consider n ∈ Jk. Again,
in each of the four sums in the expression above, we sum over indices i which correspond to feasible
instances of constraint sets (6.25) and (6.26), and hence we can apply these constraints. We consider
the sums (A) – (D) in turn. For (A), we notice that since i 6= n, using the third inequality of (6.25),
pi,k,kn ≤ 0. For (B), we notice that similar to (6.24), we have

j ∈ N− (k) \ {k} ⇔ k ∈ N+ (j) \ {j} .

Hence, using the second inequality of (6.25), pi,j,kn ≤ 0 in (B). Also, using the first inequality of (6.26),
qi,k,kn ≤ 0 in (C) and qi,j,kn ≤ 0 in (D). The upper bound follows directly using Lemma 2. The lower
bound can be proven using an identical argument.

C.5 Proof of Proposition 8

Any SLDR solution to Problem (2.2) will take the form of Problem (4.7), using the support sets V and
V̂ to approximate the exact supports V∗ and V̂∗. We begin by noting that ∀j ∈ [K], i ∈ J j implies

π1
(
−r0,j

i + y
i
,−Rj ′ei

)
= 0, and similarly i ∈ J j implies π1

(
r0,j
i − yi,R

j ′ei
)

= 0. Now, in each of
the two summation terms (in the objective and constraints), j ∈ N−(k) ⊆ [K], and i ∈ J◦l,j,k ⊆ J j (in
the first sum) or i ∈ J◦l,j,k ⊆ J j (in the second sum), for some l ∈ {0} ∪ [M ]. We further note that
π(·) ≤ π1(·). Hence, any feasible solution of the approximated Problem (4.7) is feasible in (6.30), and
since their objectives coincide, the objectives are related by ZBDLDR ≤ ZSLDR as desired.
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